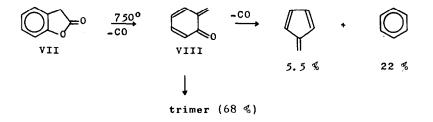
ONE-STEP SYNTHESES OF FULVENE AND FULVENALLENE:

THERMOLYSIS OF Q-COUMARANONE, PHTHALIDE, AND BENZOCYCLOPROPENE Curt Wentrup^{*} and Paul Müller

Departments of Organic Chemistry, Universities of Lausanne and Genève, Rue de la Barre 2, 1005 Lausanne; Quai de l'Ecole-de-Médicine, 1211 Genève. Switzerland

(Received in UK 7 June 1973; accepted for publication 20 June 1973)


We wish to report that gas_phase thermolyses of benzocyclopropene (I) and phthalide (II) in a flow-system yields identical products, namely fulvenallene (IV),¹ ethynylcyclopentadiene (V),¹ benzene, and toluene, most probably through the common intermediate (III).^{1,2} The volatile products, isolated by vacuum line distillation, had the compositions indicated:³

Precursor	T ^O C/Pmm	Products, relative yields				
			V	øсн ₃	øн	I
	515/10 ⁻²	14,2	≤0.75	-	-	85
	590/10 ⁻¹	81	<u>∡</u> 2	~ 2	~0	15
	800/10 ⁻²	74	16	3	3	0
	760/10 ⁻²	70	12	8	5	-
$O_{L^{0}}$	850/10 ⁻²	71	16	8	2	
	1000/10 ⁻²	9.6	25	34	32	-
^{С Н= №} 2 С́Н	590/10 ⁻¹	14	4.7	20	61	-
$\widehat{\square} \rightarrow \widehat{\square}$	655/10 ⁻¹	30	15	17.5	40	-
\bigcirc \rightarrow \bigcirc	800/10 ⁻²	27	18	18	36	-
VI	850/10 ⁻²	25	31	16	27	-
IV+V (1:2.6; repyrolysed twice)	1000/10-2	24	76			
IV+V (1:2.6; repyrolysed 4 times)	1000/10 ⁻²	20	80			

The thermolysis of I commenced at 500° with 15% conversion, largely to IV. IV is therefore considered the primary Wolff-type⁴rearrangement product of the intermediate III. Phenylcarbene (VI) from phenyldiazomethane under similar conditions gives relatively more ethynylcyclopentadiene,⁵ but the preponderance of fulvenallene at moderate temperatures suggests a reaction pathway similar to that of III.^{2b, 5d, 6}

Benzocyclopropene also gave very low yields of involatile products consisting of anthracene, phenanthrene, and stilbene. Anthracene and stilbene are also formed from phenylcarbene^{5b, c} but do not require the rearrangement III \longrightarrow VI, since benzocyclopropenes are known to dimerise both head-to-head and head-totail under mild conditions.⁷ Dimerization of III to anthracene has previously been suggested.⁸

 \propto -Coumaranone (VII), an isomer of phthalide, gave at temperatures \geq 700° and 10^{-3} -10⁻¹ mm entirely different thermolysis products: CO, fulvene, benzene,⁹ and a trimer¹⁰ of the intermediate¹¹ VIII:

On-line distillation of the pyrolysate gives a solution of pure fulvene in benzene which, despite the low yield, presents the most convenient way to obtain small quantities of fulvene for chemical reactions (\propto -coumaranone is commercially available). The pyrolysis yield increased with the temperature (at 800[°]: 88% benzene + fulvene) but at the same time the ratio of fulvene to benzene decreased (3:97).

The thermolytic difference between ∞ -coumaranone and phthalide is readily explained by the estimated thermochemistry.¹²

- (a) These products have previously been obtained by the related thermolyses of indane-1,2-dione,^{1b} benzocyclobutenone,^{1b} homophthalic anhydride,^{1c} indazole,^{1d} 1,2-diethynylcyclopropane,^{1e} and bicyclo[3.2.0]hepta-1,4,6-triene.^{1e,f}
 (b) E. Hedaya and M.E. Kent, J. Amer. Chem. Soc. <u>92</u>, 2149 (1970);
 (c) R.J. Spangler and J.H. Kim, <u>Tetrahedron Lett</u>. <u>1972</u>, 1249; (d) W.D. Crow and M.N. Paddon-Row, <u>Tetrahedron Lett</u>. <u>1972</u>, 3207; (e) R.G. Bergman, <u>Accounts Chem. Res</u>. <u>6</u>, 25 (1973); (f) T.J. Henry and R.G. Bergman, J. Amer. Chem. Soc. <u>94</u>, 5103 (1972).
- 2. (a) U.E. Wiersum (personal communication) has also observed the formation of fulvenallene from phthalide.^{2b} (b) U.E. Wiersum and T. Niewenhuis,
 <u>Tetrahedron Lett. 1973</u> (in the press).
- 3. The degree of conversion of phthalide was low: at 760° 95% starting material was recovered; at 900° 80%. Two other minor products were phenylacetylene and benzaldehyde (at $850^{\circ}/0.15$ mm: 0.35 and 7 %, resp., of the volatile fraction (identified by VPC/IR,UV,MS)).
- 4. Cf. C. Wentrup and W.D. Crow, <u>Tetrahedron 26</u>, 3965 (1970);
 O. Süs, H. Steppan and R. Dietrich, <u>Liebig's Ann. Chem</u>. <u>617</u>, 20 (1958), and earlier papers.
- 5. (a) Relative yields reported by Hedaya at al.^{5b} are different from ours,^{5c} but the same trend is strongly apparent. For a discussion see 5(d).
 (b) P. Schissel, M.E. Kent, D.J. McAdoo and E. Hedaya, <u>J. Amer. Chem. Soc</u>. <u>92</u>, 2147 (1970); (c) C. Wentrup and K. Wilczek, <u>Helv. Chim. Acta 53</u>, 1459 (1970); (d) C. Wentrup, <u>Tetrahedron</u> (submitted for publication).
- 6. A Similar conclusion has been reached by Dr. Wiersum: H.J. Hageman and U.E. Wiersum, <u>Chem. in Britain 2</u>, 206 (1973); and private correspondence with Dr. Wiersum.
- 7. B. Halton, Chem. Rev. 73, 113 (1973), and references therein.
- 8. H. Schüler and E. Lutz, Z. Naturforsch. 16a, 57 (1961).

- 9. Fulvene itself isomerised only slowly to benzene above 800° : pyrolysis of a 12% solution of fulvene in benzene at 810° decreased the fulvene content by 2 %; at 950° by 7.5 % (cf. also ref.^{1f}). It appears therefore that benzene is formed directly in the \prec -coumaranone pyrolysis.¹²
- 10. m.p. 184_85[°] (col. plates from ether/petrolether). Anal. calc. for C₇H₆O: C, 79.22; H, 5.70 %. Found: C, 79.43; H, 5.68 %. Mass spectrum: M⁺ 318 (in the crude product some tetramer and pentamer was also apparent in the mass spectrum).
- Cf. O.L. Chapman and C.L. McIntosh, <u>Chem. Commun. 1971</u>, 383;
 H.E. Holmquist, <u>J. Org. Chem. 34</u>, 4164 (1969).
- 12. C. Wentrup, following publication.